TensorFlow函数教程:tf.nn.sigmoid_cross_entropy_with_logits

tf.nn.sigmoid_cross_entropy_with_logits函数

tf.nn.sigmoid_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    name=None
)

定义在:tensorflow/python/ops/nn_impl.py。

计算给定logits的sigmoid交叉熵。

测量离散分类任务中的概率误差,其中每个类是独立的而不是互斥的。例如,可以执行多标签分类,其中图片可以同时包含大象和狗。

为简洁起见, x = logitsz = labels。logistic损失是:

  z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))

对于x <0,为避免exp(-x)中的溢出,我们重新配置上述内容:

  x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))

因此,为了确保稳定性并避免溢出,使用以下的等效公式实现:

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits和labels必须具有相同的类型和shape。

参数:

  • _sentinel:用于防止positional参数。内部的,不要使用。
  • labels:一个Tensor,与logits具有相同的类型和shape。
  • logits:一个Tensor,类型为float32或float64。
  • name:操作的名称(可选)。

返回:

与具有分量logistic损失的logits有着相同shape的Tensor。

可能引发的异常:

  • ValueError:如果logits和labels没有相同的shape。
以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

意见反馈
返回顶部