TensorFlow函数:tf.nn.all_candidate_sampler

由 Carrie 创建, 最后一次修改 2018-11-19

tf.nn.all_candidate_sampler函数

tf.nn.all_candidate_sampler(
    true_classes,
    num_true,
    num_sampled,
    unique,
    seed=None,
    name=None
)

定义在:tensorflow/python/ops/candidate_sampling_ops.py.

生成所有类的集合.

确定生成并返回所有可能的类的集合.用于测试目的.没有必要使用它, 因为您还可以使用完全softmax或完整逻辑回归.

参数:

  • true_classes:int64类型的Tensor,并且形状为[batch_size, num_true];目标类.
  • num_true:int,每个训练示例的目标类数.
  • num_sampled:int,可能的类数.
  • unique:bool,忽略.
  • seed:int,特定于操作的种子,默认值为0.
  • name:操作的名称(可选).

返回:

  • sampled_candidates:类型为int64,形状为[num_sampled]的张量.该操作确定地返回整个范围[0, num_sampled].
  • true_expected_count:类型为float的张量,形状与true_classes相同,每个true_classes样本分布下的预期计数,所有返回值均为1.0.
  • sampled_expected_count:类型为float的张量,形状与sampled_candidates相同,每个sampled_candidates样本分布下的预期计数,所有返回值均为1.0.
以上内容是否对您有帮助:

二维码
建议反馈
二维码