Spark Streaming Checkpointing

Spark Streaming Checkpointing

一个流应用程序必须全天候运行,所有必须能够解决应用程序逻辑无关的故障(如系统错误,JVM崩溃等)。为了使这成为可能,Spark Streaming需要checkpoint足够的信息到容错存储系统中,以使系统从故障中恢复。

  • Metadata checkpointing:保存流计算的定义信息到容错存储系统如HDFS中。这用来恢复应用程序中运行worker的节点的故障。元数据包括

  • Configuration :创建Spark Streaming应用程序的配置信息
  • DStream operations :定义Streaming应用程序的操作集合
  • Incomplete batches:操作存在队列中的未完成的批

  • Data checkpointing :保存生成的RDD到可靠的存储系统中,这在有状态transformation(如结合跨多个批次的数据)中是必须的。在这样一个transformation中,生成的RDD依赖于之前批的RDD,随着时间的推移,这个依赖链的长度会持续增长。在恢复的过程中,为了避免这种无限增长。有状态的transformation的中间RDD将会定时地存储到可靠存储系统中,以截断这个依赖链。

元数据checkpoint主要是为了从driver故障中恢复数据。如果transformation操作被用到了,数据checkpoint即使在简单的操作中都是必须的。

何时checkpoint

应用程序在下面两种情况下必须开启checkpoint

  • 使用有状态的transformation。如果在应用程序中用到了updateStateByKey或者reduceByKeyAndWindow,checkpoint目录必需提供用以定期checkpoint RDD。
  • 从运行应用程序的driver的故障中恢复过来。使用元数据checkpoint恢复处理信息。

注意,没有前述的有状态的transformation的简单流应用程序在运行时可以不开启checkpoint。在这种情况下,从driver故障的恢复将是部分恢复(接收到了但是还没有处理的数据将会丢失)。这通常是可以接受的,许多运行的Spark Streaming应用程序都是这种方式。

怎样配置Checkpointing

在容错、可靠的文件系统(HDFS、s3等)中设置一个目录用于保存checkpoint信息。着可以通过streamingContext.checkpoint(checkpointDirectory)方法来做。这运行你用之前介绍的有状态transformation。另外,如果你想从driver故障中恢复,你应该以下面的方式重写你的Streaming应用程序。

  • 当应用程序是第一次启动,新建一个StreamingContext,启动所有Stream,然后调用start()方法
  • 当应用程序因为故障重新启动,它将会从checkpoint目录checkpoint数据重新创建StreamingContext
// Function to create and setup a new StreamingContext
def functionToCreateContext(): StreamingContext = {
    val ssc = new StreamingContext(...)   // new context
    val lines = ssc.socketTextStream(...) // create DStreams
    ...
    ssc.checkpoint(checkpointDirectory)   // set checkpoint directory
    ssc
}

// Get StreamingContext from checkpoint data or create a new one
val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)

// Do additional setup on context that needs to be done,
// irrespective of whether it is being started or restarted
context. ...

// Start the context
context.start()
context.awaitTermination()

如果checkpointDirectory存在,上下文将会利用checkpoint数据重新创建。如果这个目录不存在,将会调用functionToCreateContext函数创建一个新的上下文,建立DStreams。请看RecoverableNetworkWordCount例子。

除了使用getOrCreate,开发者必须保证在故障发生时,driver处理自动重启。只能通过部署运行应用程序的基础设施来达到该目的。在部署章节将有更进一步的讨论。

注意,RDD的checkpointing有存储成本。这会导致批数据(包含的RDD被checkpoint)的处理时间增加。因此,需要小心的设置批处理的时间间隔。在最小的批容量(包含1秒的数据)情况下,checkpoint每批数据会显著的减少操作的吞吐量。相反,checkpointing太少会导致谱系以及任务大小增大,这会产生有害的影响。因为有状态的transformation需要RDD checkpoint。默认的间隔时间是批间隔时间的倍数,最少10秒。它可以通过dstream.checkpoint来设置。典型的情况下,设置checkpoint间隔是DStream的滑动间隔的5-10大小是一个好的尝试。

以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

意见反馈
返回顶部