std::slice

Primitive Type slice

A dynamically-sized view into a contiguous sequence, [T].

Slices are a view into a block of memory represented as a pointer and a length.

// slicing a Vec
let vec = vec![1, 2, 3];
let int_slice = &vec[..];
// coercing an array to a slice
let str_slice: &[&str] = &["one", "two", "three"];

Slices are either mutable or shared. The shared slice type is &[T], while the mutable slice type is &mut [T], where T represents the element type. For example, you can mutate the block of memory that a mutable slice points to:

let x = &mut [1, 2, 3];
x[1] = 7;
assert_eq!(x, &[1, 7, 3]);

See also the std::slice module.

Methods

impl<T> [T] [src]

Returns the number of elements in the slice.

Example

let a = [1, 2, 3];
assert_eq!(a.len(), 3);

Returns true if the slice has a length of 0.

Example

let a = [1, 2, 3];
assert!(!a.is_empty());

Returns the first element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

Returns a mutable pointer to the first element of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}

Returns the first and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}

Returns the last and all the rest of the elements of the slice, or None if it is empty.

Examples

let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);

Returns the last element of the slice, or None if it is empty.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

Returns a mutable pointer to the last item in the slice.

Examples

let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.

Examples

let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

Examples

let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);

Returns a reference to an element or subslice, without doing bounds checking. So use it very carefully!

Examples

let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}

Returns a mutable reference to an element or subslice, without doing bounds checking. So use it very carefully!

Examples

let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
    }
}

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

Examples

let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.offset(i as isize) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);

Swaps two elements in the slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Examples

let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

Reverses the order of elements in the slice, in place.

Example

let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

Returns an iterator over the slice.

Examples

let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);

Returns an iterator that allows modifying each value.

Examples

let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

Returns an iterator over size elements of the slice at a time. The chunks are slices and do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

Examples

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);

???? This is a nightly-only experimental API. (slice_rsplit #41020)

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

#![feature(slice_rsplit)]

let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

#![feature(slice_rsplit)]

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);

???? This is a nightly-only experimental API. (slice_rsplit #41020)

Returns an iterator over mutable subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

Examples

#![feature(slice_rsplit)]

let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
    count += 1;
    group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);

Returns true if the slice contains an element with the given value.

Examples

let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

Returns true if needle is a prefix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));

Returns true if needle is a suffix of the slice.

Examples

let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));

Binary searches this sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1...4) => true, _ => false, });

Sorts the slice.

This sort is stable (i.e. does not reorder equal elements) and O(n log n) worst-case.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

Sorts the slice with a comparator function.

This sort is stable (i.e. does not reorder equal elements) and O(n log n) worst-case.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

Sorts the slice with a key extraction function.

This sort is stable (i.e. does not reorder equal elements) and O(n log n) worst-case.

Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of self, but for short slices a non-allocating insertion sort is used instead.

Examples

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

???? This is a nightly-only experimental API. (sort_unstable #40585)

Sorts the slice, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.

It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

#![feature(sort_unstable)]

let mut v = [-5, 4, 1, -3, 2];

v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);

???? This is a nightly-only experimental API. (sort_unstable #40585)

Sorts the slice with a comparator function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.

It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

#![feature(sort_unstable)]

let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

???? This is a nightly-only experimental API. (sort_unstable #40585)

Sorts the slice with a key extraction function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and O(n log n) worst-case.

Current implementation

The current algorithm is based on Orson Peters' pattern-defeating quicksort, which is a quicksort variant designed to be very fast on certain kinds of patterns, sometimes achieving linear time. It is randomized but deterministic, and falls back to heapsort on degenerate inputs.

It is generally faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

Examples

#![feature(sort_unstable)]

let mut v = [-5i32, 4, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

Copies the elements from src into self.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.clone_from_slice(&src);
assert!(dst == [1, 2, 3]);

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.copy_from_slice(&src);
assert_eq!(src, dst);

Copies self into a new Vec.

Examples

let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.

Converts self into a vector without clones or allocation.

Examples

let s: Box<[i32]> = Box::new([10, 40, 30]);
let x = s.into_vec();
// `s` cannot be used anymore because it has been converted into `x`.

assert_eq!(x, vec![10, 40, 30]);

Trait Implementations

impl<T> ToOwned for [T] where
    T: Clone
[src]

Creates owned data from borrowed data, usually by cloning. Read more

???? This is a nightly-only experimental API. (toowned_clone_into #41263)recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T, V> SliceConcatExt<T> for [V] where
    T: Clone,
    V: Borrow<[T]>, 
[src]

???? This is a nightly-only experimental API. (slice_concat_ext #27747)trait should not have to exist

The resulting type after concatenation

Flattens a slice of T into a single value Self::Output. Read more

Flattens a slice of T into a single value Self::Output, placing a given separator between each. Read more

Deprecated since 1.3.0: renamed to join

impl<S> SliceConcatExt<str> for [S] where
    S: Borrow<str>, 
[src]

???? This is a nightly-only experimental API. (slice_concat_ext #27747)trait should not have to exist

The resulting type after concatenation

Flattens a slice of T into a single value Self::Output. Read more

Flattens a slice of T into a single value Self::Output, placing a given separator between each. Read more

Deprecated since 1.3.0: renamed to join

impl<T> Eq for [T] where
    T: Eq
[src]

impl<'a, T> Default for &'a [T] [src]

Creates an empty slice.

impl<'a, T> Default for &'a mut [T]
1.5.0
[src]

Creates a mutable empty slice.

impl<T, I> Index<I> for [T] where
    I: SliceIndex<[T]>, 
[src]

The returned type after indexing

The method for the indexing (container[index]) operation

impl<T> SliceExt for [T] [src]

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

???? This is a nightly-only experimental API. (core_slice_ext #32110)stable interface provided by impl [T] in later crates

impl<T> AsMut<[T]> for [T] [src]

Performs the conversion.

impl<T> Debug for [T] where
    T: Debug
[src]

Formats the value using the given formatter.

impl<'a, 'b> Pattern<'a> for &'b [char] [src]

Searches for chars that are equal to any of the chars in the array

???? This is a nightly-only experimental API. (pattern #27721)API not fully fleshed out and ready to be stabilized

Associated searcher for this pattern

???? This is a nightly-only experimental API. (pattern #27721)API not fully fleshed out and ready to be stabilized

Constructs the associated searcher from self and the haystack to search in. Read more

???? This is a nightly-only experimental API. (pattern #27721)API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches anywhere in the haystack

???? This is a nightly-only experimental API. (pattern #27721)API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the front of the haystack

???? This is a nightly-only experimental API. (pattern #27721)API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the back of the haystack

impl<T> Ord for [T] where
    T: Ord
[src]

Implements comparison of vectors lexicographically.

This method returns an Ordering between self and other. Read more

impl<A, B> PartialEq<[B]> for [A] where
    A: PartialEq<B>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 0]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 1]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 2]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 3]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 4]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 5]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 6]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 7]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 8]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 9]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 10]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 11]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 12]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 13]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 14]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 15]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 16]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 17]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 18]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 19]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 20]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 21]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 22]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 23]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 24]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 25]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 26]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 27]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 28]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 29]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 30]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 31]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 32]> for [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b mut [B] where
    B: PartialEq<A>, 
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl<T> PartialOrd<[T]> for [T] where
    T: PartialOrd<T>, 
[src]

Implements comparison of vectors lexicographically.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl<T, I> IndexMut<I> for [T] where
    I: SliceIndex<[T]>, 
[src]

The method for the mutable indexing (container[index]) operation

impl<T> Hash for [T] where
    T: Hash
[src]

Feeds this value into the given [Hasher]. Read more

Feeds a slice of this type into the given [Hasher]. Read more

impl<'a, T> IntoIterator for &'a [T] [src]

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

impl<'a, T> IntoIterator for &'a mut [T] [src]

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

impl<T> AsRef<[T]> for [T] [src]

Performs the conversion.

impl AsciiExt for [u8] [src]

Container type for copied ASCII characters.

Checks if the value is within the ASCII range. Read more

Makes a copy of the value in its ASCII upper case equivalent. Read more

Makes a copy of the value in its ASCII lower case equivalent. Read more

Checks that two values are an ASCII case-insensitive match. Read more

Converts this type to its ASCII upper case equivalent in-place. Read more

Converts this type to its ASCII lower case equivalent in-place. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII alphabetic character: U+0041 'A' ... U+005A 'Z' or U+0061 'a' ... U+007A 'z'. For strings, true if all characters in the string are ASCII alphabetic. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII uppercase character: U+0041 'A' ... U+005A 'Z'. For strings, true if all characters in the string are ASCII uppercase. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII lowercase character: U+0061 'a' ... U+007A 'z'. For strings, true if all characters in the string are ASCII lowercase. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII alphanumeric character: U+0041 'A' ... U+005A 'Z', U+0061 'a' ... U+007A 'z', or U+0030 '0' ... U+0039 '9'. For strings, true if all characters in the string are ASCII alphanumeric. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII decimal digit: U+0030 '0' ... U+0039 '9'. For strings, true if all characters in the string are ASCII digits. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII hexadecimal digit: U+0030 '0' ... U+0039 '9', U+0041 'A' ... U+0046 'F', or U+0061 'a' ... U+0066 'f'. For strings, true if all characters in the string are ASCII hex digits. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII punctuation character: U+0021 ... U+002F ! " # $ % & ' ( ) * + , - . / U+003A ... U+0040 : ; < = > ? @ U+005B ... U+0060 [ \\ ] ^ _ \U+007B ... U+007E{ | } ~` For strings, true if all characters in the string are ASCII punctuation. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII graphic character: U+0021 '@' ... U+007E '~'. For strings, true if all characters in the string are ASCII punctuation. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN. For strings, true if all characters in the string are ASCII whitespace. Read more

???? This is a nightly-only experimental API. (ascii_ctype #39658)

Checks if the value is an ASCII control character: U+0000 NUL ... U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not. Read more

impl<'a> Read for &'a [u8] [src]

Read is implemented for &[u8] by copying from the slice.

Note that reading updates the slice to point to the yet unread part. The slice will be empty when EOF is reached.

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more

Read the exact number of bytes required to fill buf. Read more

Read all bytes until EOF in this source, placing them into buf. Read more

Read all bytes until EOF in this source, placing them into buf. Read more

Creates a "by reference" adaptor for this instance of Read. Read more

Transforms this Read instance to an Iterator over its bytes. Read more

???? This is a nightly-only experimental API. (io #27802)the semantics of a partial read/write of where errors happen is currently unclear and may change

Transforms this Read instance to an Iterator over chars. Read more

Creates an adaptor which will chain this stream with another. Read more

Creates an adaptor which will read at most limit bytes from it. Read more

impl<'a> BufRead for &'a [u8] [src]

Fills the internal buffer of this object, returning the buffer contents. Read more

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to read. Read more

Read all bytes into buf until the delimiter byte or EOF is reached. Read more

Read all bytes until a newline (the 0xA byte) is reached, and append them to the provided buffer. Read more

Returns an iterator over the contents of this reader split on the byte byte. Read more

Returns an iterator over the lines of this reader. Read more

impl<'a> Write for &'a mut [u8] [src]

Write is implemented for &mut [u8] by copying into the slice, overwriting its data.

Note that writing updates the slice to point to the yet unwritten part. The slice will be empty when it has been completely overwritten.

Write a buffer into this object, returning how many bytes were written. Read more

Attempts to write an entire buffer into this write. Read more

Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more

Writes a formatted string into this writer, returning any error encountered. Read more

Creates a "by reference" adaptor for this instance of Write. Read more

impl<'a> ToSocketAddrs for &'a [SocketAddr]
1.8.0
[src]

Returned iterator over socket addresses which this type may correspond to. Read more

Converts this object to an iterator of resolved SocketAddrs. Read more

© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/primitive.slice.html

在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号

意见反馈
返回顶部